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1 Introduction

In the Standard Model, traditionally, lepton flavour is conserved at tree level. However, lepton flavour violation
has been observed in neutrinos in the form of neutrino oscillations by the Super-Kamiokande observatory [5] in
Japan and the Sudbury Neutrino Observatory [3] in Canada. It is therefore expected for lepton flavour violation
to be observed in charged leptons as well. An experiment has been proposed by the Paul Scherrer Institut [6] in
Switzerland that would attempt to take a closer look at the lepton flavour violating decay µ` ÝÑ e`e´e`, which
would theoretically only be viable via a process involving neutrino mixing:

Figure 1: A Feynman diagram for the lepton flavour violating decay µ` ÝÑ e`e´e` involving a neutrino mixing
loop [2].

The group I was a part of attempted to create a simulation of the events of a muon decaying into three
electrons µ` ÝÑ e`e´e` and then take the results of this simulation as if they came from an actual experiment
and analyse them accordingly. My contribution to the group involved creating a constructor class that would
simulate individual detectors and calculate particle hits on these detectors. Once an instance corresponding to a
given detector is created, the class takes the initial position and momentum of a particle and calculates the hit on
a detector. This, together with the momentum with which the particle enters the detector material, can then be
used further in the calculations of multiple Coulomb scattering and energy loss. I have also done major work on
developing the main class that would string the different pieces of code together.

1.1 A Word on Geometry

The three particles are simulated to randomly appear somewhere in a well defined cylindrical space within the
detector layers. They are then given randomised momenta values such that their respective momenta add up to
zero (i.e. they are created from rest), and their energies add up to the muon mass. In this way these particles are
assigned two four vectors, X “ pt, x, y, zq and P “ pE, px, py, pzq. The time component has not been implemented
into the simulation, but in reality it plays an important role in distinguishing different decay events from one
another. There is a uniform magnetic field B “ 1T along the z-axis in the positive direction. This uniform
magnetic field causes curvature to the path of the charged particles travelling through it. This is due to the
Lorentz force:

~FB “ q~v ˆ ~B, (1)

which only affects those momentum components that are parallel to the direction of the magnetic field. In our
set up, this means that the path of the particle only gets affected in the x- and y- directions, while the movement
of the particle in the z- direction is completely unaffected by the magnetic field (it is however affected by any
Coulomb scattering within the material of the detector). This is schematically represented in figure 2.
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Figure 2: Schematic of the geometry of the simulation. Particles are created within the shaded region. The
uniform magnetic field is directed into the page, causing any positively charged particles to curve anticlockwise
and negatively charged particles to curve clockwise. Plot created using GeoGebra [4].

2 Motivation behind the code

The main assumption made in the following calculations is that the particle is travelling in perfectly circular paths
when travelling between the individual detector layers. That is, that there is perfect vacuum and the effects of
energy loss and Coulomb scattering are negligible.

2.1 Hit position

A particle with charge Q, originating at px0, y0q with momentum ~p “ ppx, py, pzq will, given a uniform magnetic

field ~B and perfect vacuum, follow a path described by

px´ x0 ´ |r| sinφ`Q
π

2
q2 ` py ´ y0 ´ |r| cosφ`Q

π

2
q2 “ r2, (2)

where r “ |pK|

0.3| ~B|
is the radius of the curvature of the particle, and φ “ arctan

py
px

[1]. The detector is simulated as

a circular body with its origin at px, y, zq “ p0, 0, 0q and radius R. As such, the detector can be described by the
equation

x2 ` y2 “ R2. (3)

This situation is graphically represented in figure (3).
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Figure 3: Graphical representation of the problem at hand. Magnetic field is alongside the z-axis and as such only
affects the trajectory of the particle in the x-y plane.

This essentially simplifies to the problem of finding the intersection of two circles. Rewriting (2) as

px` C1q
2 ` py ` C2q

2 “ r2

with C1 “ ´x0´|r| sinφ`Q
π
2 and C2 “ ´y0´|r| cosφ`Qπ

2 , one can expand the brackets and subtract equation
(3) to obtain a new equation linear in x and y:

y “ ´
C1

C2
x`

r2 ´ C2
1 ´ C

2
2 ´R

2

2C2
(4)

Again, the equation can be simplified by introducing new variablesm and C wherem “ ´C1

C2
and C “

r2´C2
1´C

2
2´R

2

2C2

(appendix A: line 116). That way equation (4) can be rewritten as y “ mx`C and substituted into equation (3)
to give an equation quadratic in x:

x2 ` pmx` Cq2 “ R2. (5)

Expanding, this can be rewritten as

pm2 ` 1qx2 ` p2Cmqx` pC2 ´R2q “ 0, (6)

a quadratic equation with coefficients a “ m2 ` 1, b “ 2Cm, and c “ C2 ´ R2 (appendix A: line 124). This
quadratic equation can be solved using the determinant (appendix A: line 50) to give two solutions as follows:

x1{2 “
´b˘

?
b2 ´ 4ac

2a
. (7)

Substituting these back into equation (4) one obtains the two sets of coordinates px1, y1q and px2, y2q for the two
intersection points of the two circles. The outlook of this is presented in figure 4 below:
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Figure 4: This shows the two calculated hit coordinates - Hit1 and Hit2.

Now a problem arises from the fact that when this function is called, a user only desires to know the one solution
corresponding to Hit1. When a particle hits the detector, it will then undergo multiple coulomb scattering and
energy loss, resulting in the need for its path to be recalculated and a new value for Hit2 to be obtained. This
problem was solved by considering (1.) the distance from the particle starting position to the particle hit position,
(2.) the angles between the initial ~p vector and the vector from the starting position to the hit position, which I
shall call vector ~x, and (3.) comparing the actual hit position value with the start position value to ensure they
are not identical. There are numerous possible combinations of starting conditions and hit conditions, hence all of
these need to be considered in some combination.

1. First, the distance from the particle’s start position px0, y0q to the two possible hits is found by simple
distance formula

d1{2 “
b

px0 ´ xhit,1{2q2 ` py0 ´ yhit,1{2q2

(appendix A: line 173). Then, using a basic if condition, the hit coordinates corresponding to the shortest
distance are selected. This condition is sufficient to discriminate between solutions once the particle is already
in between the detector layers, however it fails when the particle is just created and the very first detector
hit needs to be determined. Consider for example the case pictured in figure 4. The distance to the Hit1 is
clearly greater than that to Hit2. This is where the need for the second condition arises.

2. Secondly then, we consider the two vectors ~x and ~p introduced above, and the angle between them. The
angle is found from the Euclidean definition of a vector scalar product:

~p ¨ ~x “ |~p||~x| cos θ,

rearranging:

θ “ arccos
~p ¨ ~x

|~p||~x|
.

This way two angles can be obtained corresponding to the two hit positions (appendix A: line 159). Then it
is simply a matter of comparing the two, where the smaller angle corresponds to the solution desired.

3. Finally, to make sure that when a particle leaves the last detector to be later recorded on that same detector
the program doesn’t simply return that same starting position, a condition of kind if px1 ““ x0q return x2
had to be included.

2.2 Momentum of hit

The momentum of the hit is found by first finding a vector from the centre of the particle path to the point where
the particle hits the detector, and then finding a vector perpendicular to it. If the hit coordinates are pxhit, yhitq
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and the coordinates of the centre of the particle path are p´C1,´C2q, then the vector connecting these is

pxhit ` C1, yhit ` C2q

and a vector perpendicular to it is given by

~v “ p´pyhit ` C2q, xhit ` C1q.

Scaling this vector to a unit vector and multiplying by the magnitude of the momentum vector perpendicular to
the direction of the magnetic field yields the desired result:

~phit “

„

px
py



hit

“
| ~pK|

|~v|
ˆ

„

´pyhit ` C2q

pxhit ` C1q



. (8)

The vector also has to be scaled by ´1 (or `1) depending on the charge of the particle (appendix A: line 250).

3 Output

The class as such does not simulate anything, it simply processes input and returns hit position and momentum
based on this input. I did however write another class that simulates a single particle and sends it through a
number of detectors to follow its path exactly. This class does not take into account any scattering or energy loss
that occur within the detector, rather, it simply tests whether my main constructor class behaves as it should.
This set up is illustrated in figure 5 below:

Figure 5: Detector set up in order to debug.

Using this other class that actually simulates a particle, I could obtain plots as shown in figure 7. I also printed
the initial position, momentum, and charge to screen for comparison shown in figure 6.

Figure 6: Screen prints from BlueJ.
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(a) Java output in the
form of a .csv file. (b) Plot using the data from the .csv file.

Figure 7: An example of the output obtained for a negatively charged particle with initial momenta Px “ ´20MeV
and Py “ ´25MeV . Magnetic field oriented into the plane of the page, causes negatively charged particles to
curve clockwise.
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4 Troubleshooting

When working on the program, the part that calculates the hit position was working correctly on the first try. When
coding a program that would calculate the hit momentum, however, I took two completely different approaches
before arriving at the final one. At the very beginning, I considered momentum change ∆~p in small time increments,
and kept on adding these increments onto the current momentum ~pnew “ ~pold ` ∆~p in a loop until arriving at
the momentum at the hit position. This was however deemed inefficient as in order to minimise inaccuracies, the
individual time increments had to be small, which in turn meant taking a great number of steps, resulting in a
high computing time.

The second approach I took was using trigonometric identities, congruent triangles, and other such geometrical
constructions. I have illustrated this approach in figure 8 below:

Figure 8: Illustration of the relations between individual momentum components.

While this worked perfectly well in theory, in practice Java returns any arccosines and arcsines in the range
0 ă θ ă π

2 and so the code called for a large number of if statements that would check the initial momentum and
position and the hit position and add π or 2π or any other needed value to the calculated angle such that it would
make physical sense. This method, if executed properly, would have worked, but I did not have enough time to
go through every possible combination of starting coordinates, momentum, and hit coordinates individually and
check that the returned angle is physical.

In the final version of the class, I still have not managed to account for all different scenarios. In some instances,
positively charged particles curve as if they were negatively charged and vice versa. For these cases, I have hard
coded into the main method of the simulation a condition of the kind

1 i f ( p x > 0 && p y > 0)
2 {z = ´ Q;}

and for the calculation of hit position and hit momentum used this new variable z rather than Q. While this
solution is not ideal, it does work and produces the right trajectories.

5 Individual Study

5.1 Varying Magnetic Field Strength

Taking the expression giving Lorentz force (1) and the expression giving the relationship between centripetal force

and radius of curvature F “ mv2

r , the two can be solved to find r:

r “
p

QB
, (9)
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(a) Java output in the form of a .csv file. (b) Plot using the data from the .csv file.

Figure 9: Investigation of the effects of varying magnetic field strength on the trajectory of a positively charged
particle.

i.e. the radius of curvature is inversely proportional to the strength of the magnetic field. Varying the strength
of magnetic field passed into the constructor class I created, this is exactly the effect that could be observed: The
detectors in figure 9 are spaced equally in 1cm increments from 1cm to 40cm. It is evident (refer to figure 9a) that
as the magnetic field strength gets stronger, the particles don’t ever reach some of the detectors. In other words,
the spacing and positioning of the detectors has to be chosen carefully and relative to the strength of the magnetic
field. The radius of the curvature is further also proportional to the momentum in the x-y plane of the particle,
and even within our final simulation we found that sometimes one of the three decay product particles is created
such that its momentum is too low to reach the third and fourth detector. These points then had to be discarded
from analysis.

While the strength of the magnetic field and spacing of detectors is discussed and taken into account in the PSI
proposal, I found no mention of the second effect, which leads me to think that the way we assigned the momenta
to individual particles is not entirely physical.

5.2 Using Data from all Detectors to Improve the Accuracy of Analysis

Another aspect of our simulation I chose to investigate is how the accuracy of our analysis could be improved.
Specifically, how could the calculation of the centre of trajectory be improved and from there the determination
of the vertex of the event. Presently, the analysis relies on first finding the centre of the trajectory by method
illustrated in figure 10 below:
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Figure 10: Method used to obtain the momentum of a particle from its hits on the outer set of detectors.

A bisector line is drawn in between the hits on the outer set of detectors and a circle is fitted from a number
of points along the bisector, until it matches up with the hit obtained after the particle’s recoil. The problem
with this method is that once multiple coulomb scattering, energy loss, and the limitations due to the detector
resolution are taken into account, it quickly becomes very inaccurate. Using a similar idea and using the hits on
all the detectors would improve the accuracy of the analysis greatly. What I propose is to construct perpendicular
bisectors between each subsequent hit, as well as between the hit on detector four, the recoil hit and detector one,
and evaluate the intersections of each set of bisectors. This way, there are

`

5
2

˘

(“ 10) sets of coordinates obtained,
which can easily be averaged out to obtain a set of coordinates corresponding to the centre of that particle’s
trajectory.

Figure 11: Proposed method for centrepoint calculation.

This way, the effects of coulomb scattering and energy loss would be averaged out in the process and would not
skew the data as much. The coordinates would be simply given as

x̄ “

ř10
n“1 xn
10

and ȳ “

ř10
n“1 yn
10

,
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with statistical uncertainties given by the standard error on mean:

SEx “

b

ř10
n“1pxn ´ x̄q

2

10
and SEy “

b

ř10
n“1pyn ´ ȳq

2

10
.

From there, it is easy to show how adding another more detectors could improve the accuracy of the calculated
position. Adding another detector, constructing perpendicular bisectors as before, and calculating their intersec-
tions would result in

`

6
2

˘

(“ 15) points of intersection. These averaged out would give a more precise result as the
error on mean decreases proportionally to the inverse of number of intersection points. The class calculating the
vertex of the decay (i.e. the starting position of the three particles) uses the three calculated centrepoints and as
such, the error on centrepoint coordinates propagates into the calculations of the vertex coordinates. Due to time
constraints, I was not able to properly carry out all the steps described above, however, I have attempted to.

Using the final simulation, I first suppressed the randomly thrown starting position and momenta to make sure
that the case analysed would work properly and to be able to replicate it if needed. The java output together with
the plotted .csv file are shown in figure ??. I have then rewritten the analysis class; first loading up the .csv file

(a) Java print-out. (b) Plot using the data from the .csv file.

Figure 12: Simulating an event.

(appendix B: line 41), then using the points to calculate central points of the three particles’ trajectories (appendix
B: line 101). The output of this analysis class is shown below:

Figure 13: Calculated average centrepoints of the particles’ trajectories.

I have then simulated the same event, taking into account the limitations due to the resolution of the detectors.
I did not manage to incorporate the calculations of standard error on mean into my analysis class due to time
constraints (although I’ve attempted, see appendix B: line 133), but with just a little more time this could be
implemented and also effects of scattering and energy loss could be added back into the simulation and their
effects on the accuracy of the analysis properly investigated.

6 Conclusion

Java, as an object oriented programming language, was ideal for this project as different pieces of code needed
to be reused multiple times. Within the program that I wrote, I used different class methods that serve a single
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purpose and can be used throughout the program. An example of such a class method is one named dotProduct
which as the name suggests, when one passes two vectors into this method, it returns the dot product of the
two vectors. Another example would be a class method titled getLength, which takes two numbers, say a and b
and returns length “

?
a2 ` b2. I used such methods heavily throughout my code, as certain tasks needed to be

performed over and over again.
From the perspective of the whole group project, i.e., the grand simulation itself, my program also acts as a

single reusable unit whose sole purpose is to return the hit position and momentum when called. In this way, the
whole simulation could be put together despite each person’s different coding style. Additionally, classes written
in weeks prior to the start of the project, such as the classes calculating energy loss, multiple coulomb scattering,
or smearing of hits due to detector resolution could be easily reused.

In the end, as a group, we managed to simulate the individual decay events, calculate hits, shakily incorpo-
rate the classes written in weeks prior, and finally analyse the individual hits. There is surely plenty room for
improvement - background decays could be simulated, the whole process could be automated a bit more, the crude
hard-coded instances could be rewritten - but given that none of the members of our group worked with Java prior
to taking this module, the simulation came together rather well.
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A Detector Class Code

1 import java . i o . ∗ ;
2 /∗∗
3 ∗ Given a magnetic f i e l d s t r ength and r a d i a l p o s i t i o n o f a detector , t h i s c l a s s r e tu rn s the h i t

on the de t e c t o r .
4 ∗
5 ∗ @ Lenka Pol lachova
6 ∗ @ March 2016
7 ∗/
8 pub l i c c l a s s Hit
9 {

10 s t a t i c Pr intWriter s c r e en = new PrintWriter ( System . out , t rue ) ;
11

12 // in s t ance v a r i a b l e s ´ r ep l a c e the example below with your own
13 pr i va t e double B, R;
14

15 protec ted double m = . 5 1 1 ; // MeV
16 protec ted double p i = Math . PI ;
17

18 /∗∗
19 ∗ Constructor f o r ob j e c t s o f c l a s s Curvature
20 ∗/
21 pub l i c Hit ( double strength , double rad )
22 {
23 // i n i t i a l i s e i n s t ance v a r i a b l e s
24 B = st rength ; // in Tesla , uniform magnetic f i e l d
25 R = rad ; // in cm
26 }
27

28 pub l i c double getRadius ( double x , double y )
29 {
30 double r = getLength (x , y ) / (3 ∗ B) ; // B in T, P in MeV, r in cm
31 r e turn r ;
32 }
33

34 pub l i c double getLength ( double x , double y )
35 {
36 double l ength = Math . s q r t ( x∗x + y∗y ) ;
37 r e turn l ength ;
38 }
39

40 pub l i c double dotProduct ( double [ ] x , double [ ] y )
41 {
42 double sum = 0 ;
43 f o r ( i n t i = 0 ; i < x . l ength ; i++)
44 {
45 sum = sum + x [ i ] ∗ y [ i ] ;
46 }
47 r e turn sum ;
48 }
49

50 pub l i c double Root1 ( double a , double b , double c )
51 {
52 double s o l 1 = (´b + Math . s q r t (b∗b ´ 4∗a∗c ) ) / (2∗ a ) ;
53 r e turn s o l 1 ;
54 }
55

56 pub l i c double Root2 ( double a , double b , double c )
57 {
58 // sc r e en . p r i n t l n (” t e s t root ” + (b∗b ´ 4∗a∗c ) ) ;
59 double s o l 2 = (´b ´ Math . sq r t (b∗b ´ 4∗a∗c ) ) / (2∗ a ) ;
60 r e turn s o l 2 ;
61 }
62

63 pub l i c double [ ] f indCenter ( double x0 , double y0 , double r , double phi , double Q, double [ ] Pi
)

64 {
65 double C1 , C2 ;
66 i f (Q == 1)
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67 {
68 C1 = ´ x0 ´ r ∗ Math . s i n ( phi + Q∗ pi /2) ;
69 C2 = ´ y0 ´ r ∗ Math . cos ( phi + Q∗ pi /2) ;
70

71 }
72 e l s e
73 {
74 C1 = ´ x0 ´ r ∗ Math . s i n ( phi + Q∗ pi /2) ;
75 C2 = ´ y0 ´ r ∗ Math . cos ( phi + Q∗ pi /2) ;
76 }
77 double [ ] C = {C1 , C2} ;
78 r e turn C;
79 }
80

81 pub l i c double [ ] g e tPo s i t i on ( double [ ] Xi , double [ ] Pi , double Q)
82 {
83 double x = 0 , y = 0 ;
84

85 /∗∗
86 ∗ p a r t i c l e s t a r t i n g at ( x0 , y0 ) w i l l d e s c r i b e the t r a j e c t o r y
87 ∗ ( x ´ x0 ´ r ∗ s i n ( phi + Q pi /2) ) ˆ2 + (y ´ y0 ´ r ∗ cos ( phi + Q pi /2) ) ˆ2 = r ˆ2
88 ∗ l e t me summarise the constant va lue s in to C1 and C2
89 ∗/
90

91 double x0 = Xi [ 1 ] ;
92 double y0 = Xi [ 2 ] ;
93 double phi ;
94 phi = Math . atan2 ( Pi [ 2 ] , Pi [ 1 ] ) ; // rad ians
95 double r = getRadius ( Pi [ 1 ] , Pi [ 2 ] ) ; // cm
96

97 // sc r e en . p r i n t l n (” t e s t pos ” + Xi [1 ]+ ” , ”+ Xi [ 2 ] ) ;
98 // sc r e en . p r i n t l n (” t e s t mom ”+ Pi [1 ]+ ” , ”+ Pi [ 2 ] ) ;
99 // sc r e en . p r i n t l n (” t e s t r ”+ r ) ;

100

101 double [ ] Centre = f indCenter ( x0 , y0 , r , phi , Q, Pi ) ;
102 double C1 = Centre [ 0 ] ;
103 double C2 = Centre [ 1 ] ;
104

105 // sc r e en . p r i n t l n ( ” c1 = ” +C1+ ” , c2= ”+C2) ;
106 double [ ] X = new double [ Xi . l ength ] ;
107

108 i f (2∗ r < R) { r e turn X;}
109

110 /∗∗
111 ∗ eq I : ( x+C1) ˆ2 + (y+C2) ˆ2 = r ˆ2 ( c i r c l e that p a r t i c l e w i l l f o l l ow )
112 ∗ eq I I : xˆ2 + yˆ2 = Rˆ2 ( c i r c l e o f the de t e c t o r )
113 ∗ take I ´ I I to obta in an equat ion l i n e a r in both x and y and rear range to the form y =

mx + C
114 ∗/
115

116 double m = ´ C1 / C2 ;
117 double C = ( r ∗ r ´ R∗R ´ C1∗C1 ´ C2∗C2) / (2∗C2) ;
118

119 /∗∗
120 ∗ s ub s t i t u t e va lue s back in to one o f o r i g i n a l equat ions to obta in a quadrat i c in x in

the form
121 ∗ a xˆ2 + b x + c = 0
122 ∗/
123

124 double a = m∗m + 1 ;
125 double b = 2∗C∗m;
126 double c = C∗C ´ R∗R;
127

128 /∗∗
129 ∗ s o l v e quadrat i c us ing the determinant c l a s s method to get two s o l u t i o n s cor re spond ing

to the two i n t e r c e p t s
130 ∗/
131

132 double x1 = Root1 (a , b , c ) ;
133 double x2 = Root2 (a , b , c ) ;

15



134

135 /∗∗
136 ∗ s ub s t i t u t e t h i s back in to y = mx + C
137 ∗ to obta in root y1 and y2 corre spond ing to x1 and x2 ( aka two i n t e r s e c t i n g po in t s )
138 ∗/
139

140 double y1 = m∗x1 + C;
141 double y2 = m∗x2 + C;
142

143 /∗∗
144 ∗ now we have two roo t s ( x1 , y1 ) and ( x2 , y2 )
145 ∗ we now have to check which root makes sense
146 ∗ to do t h i s we f i nd vec to r v1 = ( x1 + C1 ; y1 + C2) and vec to r v2 = ( x2+C1 , y2+C2)
147 ∗ and f i nd the ang le between t h i s vec to r and the i n i t i a l Pt vec to r
148 ∗ the one that g i v e s the sma l l e r ang le i s the d e s i r ed s o l u t i o n
149 ∗/
150

151 double [ ] v1 = {x1 ´ x0 , y1 ´ y0 } ;
152 double [ ] v2 = {x2 ´ x0 , y2 ´ y0 } ;
153 double [ ] pt = {Pi [ 1 ] , Pi [ 2 ] } ;
154

155 double v1Length = getLength ( v1 [ 0 ] , v1 [ 1 ] ) ;
156 double v2Length = getLength ( v2 [ 0 ] , v2 [ 1 ] ) ;
157 double ptLength = getLength ( pt [ 0 ] , pt [ 1 ] ) ;
158

159 double theta1 = Math . acos ( dotProduct ( v1 , pt ) / ( v1Length ∗ ptLength ) ) ;
160 double theta2 = Math . acos ( dotProduct ( v2 , pt ) / ( v2Length ∗ ptLength ) ) ;
161 /∗
162 i f (Math . abs ( theta1 ) < Math . abs ( theta2 ) )
163 {
164 X[ 1 ] = x1 ;
165 X[ 2 ] = y1 ;
166 }
167 e l s e
168 {
169 X[ 1 ] = x2 ;
170 X[ 2 ] = y2 ;
171 }
172 ∗/
173 double d1=Math . s q r t ( ( x1´x0 ) ∗( x1´x0 )+(y1´y0 ) ∗( y1´y0 ) ) ;
174 double d2=Math . s q r t ( ( x2´x0 ) ∗( x2´x0 )+(y2´y0 ) ∗( y2´y0 ) ) ;
175 i f ( d1<d2 )
176 {
177 i f (Math . abs ( theta1 ) < Math . abs ( theta2 ) )
178 {
179 i f ( ( f l o a t ) x0 == ( f l o a t ) x1 && ( f l o a t ) y0 == ( f l o a t ) y1 )
180 {
181 X[ 1 ] = x2 ;
182 X[ 2 ] = y2 ;
183 }
184 e l s e
185 {
186 X[ 1 ] = x1 ;
187 X[ 2 ] = y1 ;
188 }
189 }
190 e l s e
191 {
192 i f ( ( f l o a t ) x0 == ( f l o a t ) x2 && ( f l o a t ) y0 == ( f l o a t ) y2 )
193 {
194 X[ 1 ] = x1 ;
195 X[ 2 ] = y1 ;
196 }
197 e l s e
198 {
199 X[ 1 ] = x2 ;
200 X[ 2 ] = y2 ;
201 }
202 }
203 }
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204 e l s e
205 {
206 i f ( ( f l o a t ) x0 ==( f l o a t ) x2 && ( f l o a t ) y0 == ( f l o a t ) y2 )
207 {
208 X[ 1 ] = x1 ;
209 X[ 2 ] = y1 ;
210 }
211 e l s e
212 {
213 X[ 1 ] = x2 ;
214 X[ 2 ] = y2 ;
215 }
216 }
217 // sc r e en . p r i n t l n (” t e s t ”+X[1]+ ” , ”+ X[ 2 ] ) ;
218

219 X[ 0 ] = Xi [ 0 ] ;
220 X[ 3 ] = Xi [ 3 ] ;
221 r e turn X;
222 }
223

224 pub l i c double [ ] getMomentum( double [ ] Xi , double [ ] Pi , double Q)
225 {
226 double [ ] Xf = ge tPo s i t i on (Xi , Pi , Q) ;
227

228 /∗∗
229 ∗ p a r t i c l e s t a r t i n g at ( x0 , y0 ) w i l l d e s c r i b e the t r a j e c t o r y
230 ∗ ( x ´ x0 ´ r ∗ s i n ( phi + Q pi /2) ) ˆ2 + (y ´ y0 ´ r ∗ cos ( phi + Q pi /2) ) ˆ2 = r ˆ2
231 ∗ l e t me summarise the constant va lue s in to C1 and C2
232 ∗/
233

234 double x0 = Xi [ 1 ] ;
235 double y0 = Xi [ 2 ] ;
236

237 double phi = Math . atan2 ( Pi [ 2 ] , Pi [ 1 ] ) ; // rad ians
238 double r = getRadius ( Pi [ 1 ] , Pi [ 2 ] ) ; // cm
239

240 double [ ] Centre = f indCenter ( x0 , y0 , r , phi , Q, Pi ) ;
241 double C1 = Centre [ 0 ] ;
242 double C2 = Centre [ 1 ] ;
243 /∗∗
244 ∗ equat ion becomes : ( x+C1) ˆ2 + (y+C2) ˆ2 = r ˆ2 ( c i r c l e that p a r t i c l e w i l l f o l l ow )
245 ∗ c en t r e o f c i r c l e at (´C1 , ´C2)
246 ∗ vec to r from o r i g i n (O) to h i t p o s i t i o n (P) OP = ( xf + C1 , y f + C2)
247 ∗ vec to r pe rpend i cu l a r to that : vp = ( xf + C1 , ´ yf ´ C2)
248 ∗/
249

250 double [ ] v = new double [ 2 ] ;
251 i f ( Q == 1)
252 {
253 v [ 0 ] = ´(Xf [ 1 ] + C1) ;
254 v [ 1 ] = (Xf [ 2 ] + C2) ;
255 }
256 e l s e
257 {
258 v [ 0 ] = (Xf [ 1 ] + C1) ;
259 v [ 1 ] = ´(Xf [ 2 ] + C2) ;
260 }
261 double vS ize = getLength (v [ 0 ] , v [ 1 ] ) ;
262 double pS ize = getLength ( Pi [ 1 ] , Pi [ 2 ] ) ;
263 double [ ] p = new double [ v . l ength ] ;
264

265 /∗∗
266 ∗ now to make i t to a un i t vec to r we d iv id e each component through by vS ize
267 ∗ we then mult ip ly by pSize to s c a l e i t back up to obta in the momentum components
268 ∗/
269

270 f o r ( i n t i = 0 ; i < v . l ength ; i++)
271 {
272 p [ i ] = v [ i ] / vS ize ∗ pSize ;
273 }
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274

275 i f (Q == 1)
276 {
277 i f (Math . abs (Math . atan2 (p [ 1 ] , p [ 0 ] )´Math . atan2 ( Pi [ 2 ] , Pi [ 1 ] ) )>pi / 2 . )
278 {
279 p[0]=´p [ 0 ] ;
280 p[1]=´p [ 1 ] ;
281 }
282 }
283

284 double E = Pi [ 0 ] ;
285 double pz = Pi [ 3 ] ;
286

287 double [ ] P = {E, p [ 0 ] , p [ 1 ] , pz } ;
288 r e turn P;
289 }
290

291 }
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B Analysis Class Code

1 import java . i o . ∗ ;
2 import java . u t i l . Scanner ;
3 /∗∗
4 ∗ Analyses data .
5 ∗
6 ∗ @ Lenka P o l l a c h o v
7 ∗ @ May 2016
8 ∗/
9 pub l i c c l a s s Ana lys i s

10 {
11 s t a t i c Pr intWriter s c r e en = new PrintWriter ( System . out , t rue ) ;
12 s t a t i c BufferedReader keyboard = new BufferedReader (new InputStreamReader ( System . in ) ) ;
13

14 pub l i c s t a t i c void main ( S t r ing [ ] a rgs ) throws IOException
15 {
16 /∗∗
17 ∗ ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
18 ∗ Scanning . csv f i l e i n to array
19 ∗ ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
20 ∗/
21 i n t [ ] yearNum ;
22 double [ ] [ ] h i t s ;
23

24 F i l e f i l e = new F i l e ( ”muonDecay . csv ” ) ;
25 Scanner scan = new Scanner ( f i l e ) ;
26

27 //Read the i n t on the next l i n e to a l l o c a t e ar rays
28 f i n a l i n t n = 8 ;
29

30 // A l l o ca t e a r rays with l ength n
31 h i t s = new double [ n ] [ ] ;
32

33 //Read in the header l i n e o f years , parse and copy in to yearNum
34 St r ing [ ] yearHeaders = scan . nextLine ( ) . s p l i t ( ” , ” ) ;
35 f i n a l i n t q = yearHeaders . l ength ;
36

37 //Now read un t i l we run out o f l i n e s ´ put the f i r s t in country names and the r e s t in the
t ab l e

38 i n t c = 0 ;
39 whi le ( scan . hasNext ( ) )
40 {
41 St r ing [ ] inputArr = scan . nextLine ( ) . s p l i t ( ” , ” ) ;
42 h i t s [ c ] = new double [ q ] ;
43 f o r ( i n t i = 0 ; i < q ; i++)
44 {
45 h i t s [ c ] [ i ] = Double . parseDouble ( inputArr [ i ] ) ;
46 // sc r e en . p r i n t l n ( h i t s [ c ] [ i ] ) ;
47 }
48 c++;
49 }
50 scan . c l o s e ( ) ;
51

52 /∗∗
53 ∗ Find midpoints between h i t s
54 ∗ Find b i s e c t o r s :
55 ∗ I f we have two po in t s A and B then the \vec{AB} i s de f i ned as ( (xB ´ xA) , (yB ´ yA) )
56 ∗ vec to r pe rpend i cu l a r to i t i s g iven by (´(yB ´ yA) , (xB ´ xA) )
57 ∗/
58 double [ ] [ ] midpoints = new double [ 7 ] [ 6 ] ;
59 double [ ] [ ] b i s = new double [ 7 ] [ 6 ] ;
60 f o r ( i n t j = 0 ; j < 6 ; j++) // loop over p a r t i c l e s ( columns )
61 {
62 f o r ( i n t i = 0 ; i < 6 ; i++) // loop over d e t e c t o r s ( rows )
63 {
64 // sc r e en . p r i n t l n ( h i t s [ i ] [ j ] ) ;
65 midpoints [ i ] [ j ] = ( h i t s [ i ] [ j ] + h i t s [ i +1] [ j ] ) /2 ;
66 b i s [ i ] [ 0 ] = ´( h i t s [ i +1 ] [ 1 ] ´ h i t s [ i ] [ 1 ] ) ;
67 b i s [ i ] [ 1 ] = h i t s [ i +1 ] [ 0 ] ´ h i t s [ i ] [ 0 ] ;
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68

69 b i s [ i ] [ 2 ] = ´( h i t s [ i +1 ] [ 3 ] ´ h i t s [ i ] [ 3 ] ) ;
70 b i s [ i ] [ 3 ] = h i t s [ i +1 ] [ 2 ] ´ h i t s [ i ] [ 2 ] ;
71

72 b i s [ i ] [ 4 ] = ´( h i t s [ i +1 ] [ 5 ] ´ h i t s [ i ] [ 5 ] ) ;
73 b i s [ i ] [ 5 ] = h i t s [ i +1 ] [ 4 ] ´ h i t s [ i ] [ 4 ] ;
74 }
75 midpoints [ 6 ] [ j ] = ( h i t s [ 6 ] [ j ] + h i t s [ 0 ] [ j ] ) /2 ;
76

77 b i s [ 6 ] [ 0 ] = ´( h i t s [ 0 ] [ 1 ] ´ h i t s [ 6 ] [ 1 ] ) ;
78 b i s [ 6 ] [ 1 ] = h i t s [ 0 ] [ 0 ] ´ h i t s [ 6 ] [ 0 ] ;
79

80 b i s [ 6 ] [ 2 ] = ´( h i t s [ 0 ] [ 3 ] ´ h i t s [ 6 ] [ 3 ] ) ;
81 b i s [ 6 ] [ 3 ] = h i t s [ 0 ] [ 2 ] ´ h i t s [ 6 ] [ 2 ] ;
82

83 b i s [ 6 ] [ 4 ] = ´( h i t s [ 0 ] [ 5 ] ´ h i t s [ 6 ] [ 5 ] ) ;
84 b i s [ 6 ] [ 5 ] = h i t s [ 0 ] [ 4 ] ´ h i t s [ 6 ] [ 4 ] ;
85 }
86 /∗∗
87 ∗ Find i n t e r s e c t i o n s between i nd i v i dua l h i t s
88 ∗ y=mx+C
89 ∗/
90 double [ ] [ ] m = new double [ 7 ] [ 3 ] ;
91 double [ ] [ ] C = new double [ 7 ] [ 3 ] ;
92 f o r ( i n t i = 0 ; i < 6 ; i++) // loop over d e t e c t o r s
93 {
94 f o r ( i n t j = 0 ; j < 3 ; j++) // loop over p a r t i c l e s
95 {
96 m[ i ] [ j ] = b i s [ i ] [ 2 ∗ j +1] / b i s [ i ] [ 2 ∗ j ] ;
97 C[ i ] [ j ] = ´ m[ i ] [ j ] ∗ midpoints [ i ] [ 2 ∗ j ] + midpoints [ i ] [ 2 ∗ j +1] ;
98 }
99 }

100

101 double [ ] [ ] Xsol = new double [ 6 ] [ 3 ] ;
102 double [ ] [ ] Ysol = new double [ 6 ] [ 3 ] ;
103 f o r ( i n t i = 0 ; i < 6 ; i++) // loop over d e t e c t o r s
104 {
105 f o r ( i n t j = 0 ; j < 3 ; j++) // loop over p a r t i c l e s
106 {
107 Xsol [ i ] [ j ] = (C[ i +1] [ j ]´C[ i ] [ j ] ) /(m[ i ] [ j ]´m[ i +1] [ j ] ) ;
108 Ysol [ i ] [ j ] = m[ i ] [ j ]∗ Xsol [ i ] [ j ] + C[ i ] [ j ] ;
109 }
110 }
111 /∗∗
112 ∗ Add up s o l u t i o n s and average them out
113 ∗/
114 double [ ] sumX = {0 , 0 , 0} ;
115 double [ ] sumY = {0 , 0 , 0} ;
116 f o r ( i n t j = 0 ; j < 3 ; j++) // part
117 {
118 f o r ( i n t i = 0 ; i < 6 ; i++) // det
119 {
120 sumX[ j ] = sumX[ j ] + Xsol [ i ] [ j ] ;
121 sumY[ j ] = sumY[ j ] + Ysol [ i ] [ j ] ;
122 }
123 }
124

125 double [ ] avgX = new double [ 3 ] ;
126 double [ ] avgY = new double [ 3 ] ;
127 f o r ( i n t i = 0 ; i < 3 ; i++)
128 {
129 avgX [ i ] = sumX[ i ] /sumX. l ength ;
130 avgY [ i ] = sumY[ i ] /sumY. l ength ;
131 }
132 /∗∗
133 ∗ Calcu la te standard e r r o r on mean
134 ∗/
135 double [ ] SEx = new double [ 3 ] ;
136 double [ ] SEy = new double [ 3 ] ;
137 double [ ] SDsumX = {0 , 0 , 0} ;
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138 double [ ] SDsumY = {0 , 0 , 0} ;
139 f o r ( i n t j = 0 ; j < 3 ; j++) // part
140 {
141 f o r ( i n t i = 0 ; i < 6 ; i++) // det
142 {
143 SDsumX[ j ] = SDsumX[ j ] + ( Xsol [ i ] [ j ]´avgX [ j ] ) ∗( Xsol [ i ] [ j ]´avgX [ j ] ) ;
144 s c r e en . p r i n t l n ( ( Xsol [ i ] [ j ] ) + ” ” + avgX [ j ] ) ;
145 SDsumY[ j ] = SDsumY[ j ] + ( Ysol [ i ] [ j ]´avgY [ j ] ) ∗( Ysol [ i ] [ j ]´avgY [ j ] ) ;
146 }
147 SEx [ j ] = SDsumX[ j ] / 6 ;
148 SEy [ j ] = SDsumY[ j ] / 6 ;
149

150 // sc r e en . p r i n t l n (” Pa r t i c l e ” + ( j +1) ) ;
151 // sc r e en . p r i n t l n (” x c en t r e = ” + ( f l o a t )avgX [ j ] + ” \u00B1 ” + ( f l o a t )SEx [ j ] ) ;
152 // sc r e en . p r i n t l n (” y c en t r e = ” + ( f l o a t )avgY [ j ] + ” \u00B1 ” + ( f l o a t )SEy [ j ] ) ;
153 }
154 }
155 }
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